Weighted superposition operators on Fock spaces

نویسندگان

چکیده

Abstract We characterize all pairs of entire functions $$(u,\psi )$$ ( u , ψ ) for which the induced weighted superposition operator $$S_{(u,\psi )}$$ S transforms one Fock space into another space. Further analytical structures like boundedness and Lipschitz continuity are described. We, in particular, show spaces support no compact operator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superposition Operators on Dirichlet Spaces

In the context of a strongly local Dirichlet space we show that if a function mapping the real line to itself (and fixing the origin) operates by composition on the left to map the Dirichlet space into itself, then the function is necessarily locally Lipschitz continuous. If, in addition, the Dirichlet space contains unbounded elements, then the function must be globally Lipschitz continuous. T...

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas

سال: 2022

ISSN: ['1578-7303', '1579-1505']

DOI: https://doi.org/10.1007/s13398-022-01216-6